The exercise defines:
\Gamma = \lbrace (x,y) \in \mathbb{R}^2 \hspace{0.25cm} \big| \hspace{0.25cm} y = f(x), x \in \mathbb{R} \rbrace
For any k \in \mathbb{Z}, let \hspace{0.25cm} I_k = [k,k+1].
Since f is continuous on \mathbb{R}, f is actually uniformly continuous an any compact interval. This means that on any I_k, \hspace{0.25cm} \forall \epsilon > 0, \hspace{0.25cm} \exists \delta > 0 such that |x - y| < \delta \Rightarrow \hspace{0.25cm} |f(x) - f(y)| < \epsilon.
For any \epsilon > 0, choose m large enough such that
|x - y| \leq \frac{1}{2^{m + |k|+2}} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |f(x) - f(y)| < \epsilon
Next, let \lbrace I_k^j \rbrace be a collection of compact intervals of length \frac{1}{2^{m + |k|+2}} such that we can write:
I_k = \bigcup_{j=1}^{2^m} I_k^j
Next, notice, if:
\Gamma_k = \lbrace (x,y) \in \mathbb{R}^2 \hspace{0.25cm} \big| \hspace{0.25cm} y = f(x), x \in I_k \rbrace
Then:
\Gamma_k \subset \bigcup_{j=1}^{2^m} \big(I_k^j \times f(I_k^j)\big)
And:
m(\Gamma_k) \leq m\Big(\bigcup_{j=1}^{2^m} \big(I_k^j \times f(I_k^j)\big)\Big) \leq \sum_{j=1}^{2^m} m\big(I_k^j \times f(I_k^j)\big) \leq \ldots
\ldots \leq \sum_{j=1}^{2^m} \frac{\epsilon}{2^{m + |k|+2}} = \frac{2^m \epsilon}{2^{m + |k| + 2}} = \frac{\epsilon}{2^{|k| + 2}}
Lastly, notice that \Gamma = \bigcup_{k=-\infty}^{\infty} \Gamma_k. I.e.
m(\Gamma) \leq \sum_{k=-\infty}^{\infty} m(\Gamma_k) \leq \sum_{k=-\infty}^{\infty} \frac{\epsilon}{2^{|k| + 2}} \leq \ldots
\ldots \leq 2\sum_{k=0}^{\infty} \frac{\epsilon}{2^{|k| + 2}} = 2\frac{\epsilon}{2} = \epsilon
Thus, since \epsilon > 0, arbitrarily, we have that m(\Gamma) = 0.
No comments:
Post a Comment