The exercise defines:
$$\Gamma = \lbrace (x,y) \in \mathbb{R}^2 \hspace{0.25cm} \big| \hspace{0.25cm} y = f(x), x \in \mathbb{R} \rbrace$$
For any $k \in \mathbb{Z}$, let $\hspace{0.25cm} I_k = [k,k+1]$.
Since $f$ is continuous on $\mathbb{R}$, $f$ is actually uniformly continuous an any compact interval. This means that on any $I_k$, $\hspace{0.25cm} \forall \epsilon > 0, \hspace{0.25cm} \exists \delta > 0$ such that $|x - y| < \delta \Rightarrow \hspace{0.25cm} |f(x) - f(y)| < \epsilon$.
For any $\epsilon > 0$, choose $m$ large enough such that
$$|x - y| \leq \frac{1}{2^{m + |k|+2}} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |f(x) - f(y)| < \epsilon$$
Next, let $\lbrace I_k^j \rbrace$ be a collection of compact intervals of length $\frac{1}{2^{m + |k|+2}}$ such that we can write:
$$I_k = \bigcup_{j=1}^{2^m} I_k^j$$
Next, notice, if:
$$\Gamma_k = \lbrace (x,y) \in \mathbb{R}^2 \hspace{0.25cm} \big| \hspace{0.25cm} y = f(x), x \in I_k \rbrace$$
Then:
$$\Gamma_k \subset \bigcup_{j=1}^{2^m} \big(I_k^j \times f(I_k^j)\big)$$
And:
$$m(\Gamma_k) \leq m\Big(\bigcup_{j=1}^{2^m} \big(I_k^j \times f(I_k^j)\big)\Big) \leq \sum_{j=1}^{2^m} m\big(I_k^j \times f(I_k^j)\big) \leq \ldots$$
$$\ldots \leq \sum_{j=1}^{2^m} \frac{\epsilon}{2^{m + |k|+2}} = \frac{2^m \epsilon}{2^{m + |k| + 2}} = \frac{\epsilon}{2^{|k| + 2}} $$
Lastly, notice that $\Gamma = \bigcup_{k=-\infty}^{\infty} \Gamma_k$. I.e.
$$m(\Gamma) \leq \sum_{k=-\infty}^{\infty} m(\Gamma_k) \leq \sum_{k=-\infty}^{\infty} \frac{\epsilon}{2^{|k| + 2}} \leq \ldots$$
$$\ldots \leq 2\sum_{k=0}^{\infty} \frac{\epsilon}{2^{|k| + 2}} = 2\frac{\epsilon}{2} = \epsilon$$
Thus, since $\epsilon > 0$, arbitrarily, we have that $m(\Gamma) = 0$.
No comments:
Post a Comment