Processing math: 100%

Monday, June 3, 2013

1.28

Given E \subset \mathbb{R}, m^*(E) > 0, assume to the contrary that for any open interval I, m^*(E \cap I) < \alpha m(I).

By the definition of the outer measure, we know that \forall \epsilon > 0 \exists \lbrace Q_k \rbrace_{k=1}^\infty such that E \subset \bigcup_{k=1}^\infty Q_k, and: \sum_{k=1}^\infty |Q_k| \leq m^*(E) + \epsilon Next, define \lbrace \mathcal{O}_k \rbrace_{k=1}^\infty to be open intervals s.t. Q_k \subset \mathcal{O}_k for all k, and m(\mathcal{O}_k)) = m(Q_k) + \frac{\epsilon}{2^k}. (Note, this can always be done by adding \frac{\epsilon}{2^{k+1}} to each side of the interval Q_k.)

We constructed \lbrace \mathcal{O}_k \rbrace_{k=1}^\infty with the following property in mind (\dagger): \sum_{k=1}^\infty m(\mathcal{O}_k) \leq \big(\sum_{k=1}^\infty m(Q_k)\big) + \epsilon \leq m^*(E) + 2\epsilon Now, just observe that E \subset \bigcup_{k=1}^\infty \mathcal{O}_k, so, by (\dagger): m^*(E) \leq \sum_{k=1}^\infty m^*(E \cap \mathcal{O}_k) \leq \alpha \sum_{k=1}^\infty m(\mathcal{O}_k) \leq \alpha(m^*(E) + 2\epsilon) So finally, we finally arrive at the result: m^*(E) \leq \alpha m^*(E) Which, of course, gives that m^*(E) = 0... a contradiction.

No comments:

Post a Comment