Processing math: 0%

Saturday, June 1, 2013

1.24

First, break the integers into two countably infinite subsets: S = \lbrace n \in \mathbb{N} \hspace{0.25cm} | \hspace{0.25cm} n = 2^{m+1} \hspace{0.25cm} \forall m \in \mathbb{N} \rbrace and \mathbb{N} \backslash S Next, let \lbrace a_n \rbrace_{n \in S} be an enumeration of \mathbb{Q} \cap [0,1]^c, and \lbrace b_n \rbrace_{n \in \mathbb{N} \backslash S} be an enumeration of \mathbb{Q} \cap [0,1].

Certainly, the set \lbrace r_n \rbrace_{n \in \mathbb{N}} = \big(\lbrace a_n \rbrace_{n \in S}\big) \bigcup \big(\lbrace b_n \rbrace_{n \in \mathbb{N} \backslash S}\big) enumerates \mathbb{Q}.

Notice the set: A = \bigcup_{n=1}^{\infty} \Big( r_n - \frac{1}{n}, r_n + \frac{1}{n} \big) = T \cup V where T = \bigcup_{n=1}^{\infty} \Big( a_n - \frac{1}{n}, a_n + \frac{1}{n} \big) and V = \bigcup_{n=1}^{\infty} \Big( b_n - \frac{1}{n}, b_n + \frac{1}{n} \big) Observe that m(A) \leq m(T) + m(V), however, by construction, both m(T) \leq 3 and m(V) \leq 2. (Those numbers, 2 and 3 are both just "safe" over-estimates.) Thus, since m(A) is finite, we have that A^c must be non-empty.

No comments:

Post a Comment