Part a.) We first need to show that $K_\delta(x)$ satisfies $(i),(ii),$ and $(iii)$ listed at the top of page 109. Given $\delta > 0$, and $\phi$ is integrable s.t. $\int_{\mathbb{R}^d} \phi = 1$, we have that:
$$\int_{\mathbb{R}^d} K_\delta (x)\hspace{0.1cm}dx = \int_{\mathbb{R}^d} \frac{1}{\delta^d} \phi(x / \delta) \hspace{0.1cm}dx$$
...and by the dilation property of $L^1$ functions:
$$\int_{\mathbb{R}^d} \frac{1}{\delta^d} \phi(x / \delta) \hspace{0.1cm}dx = \int_{\mathbb{R}^d} \frac{\delta^d}{\delta^d} \phi(x) \hspace{0.1cm}dx = \int_{\mathbb{R}^d} \phi(x) \hspace{0.1cm}dx = 1$$
Which satisfies $(i)$. Next, notice:
$$\int_{\mathbb{R}^d} |K_\delta (x)| \hspace{0.1cm}dx = \int_{\mathbb{R}^d} |\phi(x)| \hspace{0.1cm}dx = || \phi ||_{L^1} < \infty$$
...which satisfies $(ii)$. Finally, observe that:
$$\int_{B_\mu} |K_\delta (x)| \hspace{0.1cm}dx = \int_{B_\mu} |K_\delta (x)| \hspace{0.1cm}dx = \int_{\mathbb{R}^d} \frac{1}{\delta^d} |\phi(x / \delta)| \chi_{B_\mu}(x) dx $$
...again by the dilation property of $L^1$ functions:
$$ \int_{\mathbb{R}^d} \frac{1}{\delta^d} |\phi(x / \delta)| \chi_{B_\mu}(x) dx = \int_{\mathbb{R}^d} |\phi(x)| \chi_{B_\mu}(\delta x) dx = \int_{B_{\mu / \delta}} |\phi(x)| dx$$
Therefore, given that for any $\mu > 0$, we have $B_{\mu / \delta} \to \mathbb{R}^d$ as $\delta \to 0$, it follows directly by, say the Dominated Convergence Theorem that:
$$\lim_{\delta \to 0} \int_{B_\mu^c} |K_\delta (x)| \hspace{0.1cm}dx = 0$$
...which was $(iii)$.
Part b.) With the added assumptions that $|\phi| \leq M$ where $M > 0$ and $\phi$ is supported on a compact set $S \subset \mathbb{R^d}$, we need to show that $K_\delta (x)$ is an approximation to the identity. (Properties $(ii')$ and $(iii')$) Certainly:
$$|K_\delta (x)| = |\frac{1}{\delta^d} \phi(x / \delta)| \leq \frac{1}{\delta^d}M$$
...satisfying condition $(ii')$. Next, since $S$ is compact, let $\overline{B_r}$ be a ball of radius $r = \max \lbrace \max(S), 1 \rbrace$.
$$|K_\delta (x)| \leq \frac{M}{\delta^d} \chi_S(x/\delta) \leq \frac{M}{\delta^d} \chi_{\overline{B_r}}(x/\delta)$$
Now, for $|x| > \delta r$, we have:
$$\frac{M \delta}{|x|^{d+1}} \geq \frac{M}{\delta^d} \chi_{\overline{B_r}}(x/\delta) = 0$$
For $0 < |x| \leq \delta r$ we have:
$$\frac{M \delta}{|x|^{d+1}} \geq \frac{M \delta}{|r\delta|^{d+1}} \geq \frac{M}{\delta^d}$$
...satisfying condition $(iii')$.
Part c.) First, since $\int_{\mathbb{R}^d} K_\delta (y) dy = 1$, observe that:
$$f(x) = \int_{\mathbb{R}^d}f(x) K_\delta (y) dy$$
So it now follows directly that:
$$||(f*K_\delta) - f||_{L^1} = \int_{\mathbb{R}^d} \Bigg| \int_{\mathbb{R}^d} f(x - y)K_{\delta}(y)dy - f(x) \Bigg| \hspace{0.1cm}dx = \ldots$$
$$\ldots = \int_{\mathbb{R}^d} \Bigg| \int_{\mathbb{R}^d} \big(f(x - y) - f(x)\big)K_{\delta}(y)dy \Bigg| \hspace{0.1cm}dx \leq \ldots$$
$$\ldots \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \big|f(x - y) - f(x)\big||K_{\delta}(y)|dy \hspace{0.1cm}dx $$
Now, by Fubini's Theorem and the triangle inequality that $\forall r > 0$:
$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \big|f(x - y) - f(x)\big||K_{\delta}(y)|dy \hspace{0.1cm}dx = \ldots $$
$$\int_{\mathbb{R}^d} \Bigg( \int_{B_r(0)} \big|f(x - y) - f(x)\big||K_{\delta}(y)|dy + \ldots$$
$$\ldots + \int_{B_r^c(0)} \big|f(x - y) - f(x)\big||K_{\delta}(y)|dy \hspace{0.1cm}\Bigg)dx \leq \ldots$$
$$\ldots \leq ||f(x-y) - f(x)||_{L^1} \int_{B_r(0)}|K_{\delta}(y)|dy + \ldots$$
$$\ldots + 2||f||_{L^1}\int_{B_r^c(0)}|K_{\delta}(y)|dy$$
Now, since $f$ is $L^1$, and from property $(ii)$ of good kernals (P.109), $\exists A > 0$ such that $||K_\delta||_{L^1} < A \hspace{0.1cm} \forall \delta$, we know $\forall \epsilon > 0$ there exists an $r > 0$ small enough such that:
$$y \in B_r(0) \hspace{0.25cm} \Rightarrow \hspace{0.25cm} ||f(x-y) - f(x)|| < \frac{\epsilon}{2A}$$
And, from property $(iii)$ of good kernals (P.109), we have that $\forall \epsilon > 0 \hspace{0.25cm} \exists \delta > 0$ small enough such that:
$$\int_{B_r^c(0)}|K_{\delta}(y)|dy < \frac{\epsilon}{4||f||_{L^1}}$$
Putting everything together, we finally see that if we choose both $\delta, r > 0$ small enough, that:
$$||f(x-y) - f(x)||_{L^1} \int_{B_r(0)}|K_{\delta}(y)|dy + \ldots$$
$$\ldots + 2||f||_{L^1}\int_{B_r^c(0)}|K_{\delta}(y)|dy < \ldots$$
$$\ldots < \frac{\epsilon}{2A}\int_{B_r(0)}|K_{\delta}(y)|dy + 2||f||_{L^1} \frac{\epsilon}{4||f||_{L^1}}<\ldots$$
$$\ldots < \frac{\epsilon}{2A} A + \frac{\epsilon}{2} = \epsilon$$
...as desired.
In preparation for a qualifying exam in Real Analysis, during the summer of 2013, I plan to solve as many problems from Stein & Shakarchi's Real Analysis text as I can. Please feel free to comment or correct me as I make my way through this.
Showing posts with label Fubini. Show all posts
Showing posts with label Fubini. Show all posts
Wednesday, June 26, 2013
Thursday, June 20, 2013
2.21
Part a.) Since the product of two measurable functions is measurable, it suffices to show that $f(x-y)$ and $g(y)\chi_{\mathbb{R}^d(x)}$ are each measurable in $\mathbb{R}^{2d}$.
Conveniently, since $f$ is measurable on $\mathbb{R}^d$, it follows directly from Proposition 3.9 (p. 86) that $f(x-y)$ is measurable on $\mathbb{R}^{2d}$. Also, since $g$ is measurable on $\mathbb{R}^d$, it follows directly from Corollary 3.7 (P. 85) that $g(y)\chi_{\mathbb{R}^d(x)}$ is measurable on $\mathbb{R}^{2d}$.
Part b.) Since we know $f(x-y)g(y)$ is measurable, by Tonelli's Theorem we have: $$\int_{\mathbb{R}^{2d}} |f(x-y)g(y)| \hspace{0.1cm}d(x,y) \hspace{0.25cm}=\hspace{0.25cm} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy$$ ...and from the translation invariance of integration we get: $$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \int_{\mathbb{R}^d} |g(y)| \int_{\mathbb{R}^d} |f(x-y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)} \int_{\mathbb{R}^d} |g(y)| dy = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)} < \infty$$ ...since both $f$ and $g$ are $L^1$.
Part c.) Since $f(x-y)g(y)$ was just shown to be integrable, it follows directly from Fubini's Theorem that for almost every $x \in \mathbb{R}^d$, : $$\int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy < \infty$$ I.e., the convolution: $$(f*g)(x) = \int_{\mathbb{R}^d} f(x-y)g(y)\hspace{0.1cm}dy$$ ...is well-defined for a.e. $x \in \mathbb{R}^d$.
Part d.) Observe that: $$\int_{\mathbb{R}^d} |(f*g)(x)\hspace{0.1cm}| dx = \int_{\mathbb{R}^d} \Bigg| \int_{\mathbb{R}^d}f(x-y)g(y)\hspace{0.1cm}dy \hspace{0.1cm}\Bigg| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx$$ ...which, by part b, we see: $$||(f*g)||_{L^1(\mathbb{R}^d)} = \int_{\mathbb{R}^d} |(f*g)(x)|\hspace{0.1cm} dx \leq \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$$ Now, if $f$ and $g$ are positive functions, $|f(x-y)g(y)|=f(x-y)g(y)$, so equality of $||(f*g)||_{L^1(\mathbb{R}^d)}$ and $||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$ follows (again) directly from part b.
Part e.) Let's first check that $\hat{f}(\xi)$ is bounded. Recall that $|e^{i \theta}| = 1 \hspace{0.25cm} \forall \theta \in \mathbb{R}$. Then, observe: $$|\hat{f}(\xi)| = \Bigg| \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \xi} \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$ \ldots \leq \int_{\mathbb{R}^d} |f(x)||e^{-2\pi i x \xi}| \hspace{0.1cm}dx = \int_{\mathbb{R}^d} |f(x)|\hspace{0.1cm}dx = ||f||_{L^1(\mathbb{R}^d)}$$ Thus, $\hat{f}(\xi)$ is bounded.
Now, let's see if $\hat{f}(\xi)$ is continuous. We begin by observing: $$|\hat{f}(\xi) - \hat{f}(\mu)| = \Bigg| \int_{\mathbb{R}^d} f(x) \big(e^{-2\pi i x \cdot \xi} - e^{-2\pi i x \cdot \mu}\big) \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$\ldots \leq \int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx$$ Note that since $f$ is $L^1(\mathbb{R}^d$, for any $\epsilon > 0$ we have that there exists an $R > 0$ such that: $$ \int_{B_R^c} |f(x)| \hspace{0.1cm} dx \leq \frac{\epsilon}{4}$$ (Where $B_R$ is a ball of radius $R$ centered the origin.)
Now, since $\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \leq 2$, we see: $$\int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx$$ From here, require: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}}$$ Now, it should be clear from the Cauchy Schwartz inequality that on $B_R$: $$ |x \cdot (\xi - \mu)| \leq R \delta = \frac{\epsilon}{8 \pi ||f||_{L^1(\mathbb{R}^d)}}$$ Therefore, plugging it all in, we finally see: $$\int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos(2\pi x \cdot (\xi - \mu)) - 1 \big| + \big|\sin(2\pi x \cdot (\xi - \mu))\big|\Big] \hspace{0.1cm}dx$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) - 1 \big| + \big|\sin\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) \big| \Big]$$ $$\leq \int_{B_R}|f(x)| \Big[\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} + \frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} \Big] \hspace{0.1cm}dx \hspace{0.25cm} \leq \ldots$$ $$\ldots \leq \frac{\epsilon ||f||_{L^1(\mathbb{R}^d)}}{2 ||f||_{L^1(\mathbb{R}^d)}} = \frac{\epsilon}{2}$$ Thus, we've just shown, for a sufficiently large $R > 0$: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |\hat{f}(\xi) - \hat{f}(\mu)| \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx \hspace{0.25cm} \leq$$ $$\ldots \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$ ...as desired.
Finally we want to show: $$\widehat{(f*g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$$ Proceed by directly applying Fubini's Theorem: $$\widehat{(f*g)}(\xi) = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm}dy \Bigg] e^{-2\pi i \xi x} \hspace{0.1cm} dx = \ldots$$ $$\ldots = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm} e^{-2\pi i \xi (x - y + y)} dy \Bigg] \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \Big(g(y) e^{-2\pi i \xi y}\Big) \hspace{0.1cm}dy \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \Big(g(y) e^{-2\pi i \xi y}\Big) \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \hspace{0.1cm}dx \hspace{0.1cm} dy$$ $$\ldots = \hat{f}(\xi)\int_{\mathbb{R}^d} g(y) e^{-2\pi i \xi y} \hspace{0.1cm} dy = \hat{f}(\xi)\hat{g}(\xi)$$ ...as desired.
Conveniently, since $f$ is measurable on $\mathbb{R}^d$, it follows directly from Proposition 3.9 (p. 86) that $f(x-y)$ is measurable on $\mathbb{R}^{2d}$. Also, since $g$ is measurable on $\mathbb{R}^d$, it follows directly from Corollary 3.7 (P. 85) that $g(y)\chi_{\mathbb{R}^d(x)}$ is measurable on $\mathbb{R}^{2d}$.
Part b.) Since we know $f(x-y)g(y)$ is measurable, by Tonelli's Theorem we have: $$\int_{\mathbb{R}^{2d}} |f(x-y)g(y)| \hspace{0.1cm}d(x,y) \hspace{0.25cm}=\hspace{0.25cm} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy$$ ...and from the translation invariance of integration we get: $$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \int_{\mathbb{R}^d} |g(y)| \int_{\mathbb{R}^d} |f(x-y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)} \int_{\mathbb{R}^d} |g(y)| dy = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)} < \infty$$ ...since both $f$ and $g$ are $L^1$.
Part c.) Since $f(x-y)g(y)$ was just shown to be integrable, it follows directly from Fubini's Theorem that for almost every $x \in \mathbb{R}^d$, : $$\int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy < \infty$$ I.e., the convolution: $$(f*g)(x) = \int_{\mathbb{R}^d} f(x-y)g(y)\hspace{0.1cm}dy$$ ...is well-defined for a.e. $x \in \mathbb{R}^d$.
Part d.) Observe that: $$\int_{\mathbb{R}^d} |(f*g)(x)\hspace{0.1cm}| dx = \int_{\mathbb{R}^d} \Bigg| \int_{\mathbb{R}^d}f(x-y)g(y)\hspace{0.1cm}dy \hspace{0.1cm}\Bigg| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx$$ ...which, by part b, we see: $$||(f*g)||_{L^1(\mathbb{R}^d)} = \int_{\mathbb{R}^d} |(f*g)(x)|\hspace{0.1cm} dx \leq \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$$ Now, if $f$ and $g$ are positive functions, $|f(x-y)g(y)|=f(x-y)g(y)$, so equality of $||(f*g)||_{L^1(\mathbb{R}^d)}$ and $||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$ follows (again) directly from part b.
Part e.) Let's first check that $\hat{f}(\xi)$ is bounded. Recall that $|e^{i \theta}| = 1 \hspace{0.25cm} \forall \theta \in \mathbb{R}$. Then, observe: $$|\hat{f}(\xi)| = \Bigg| \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \xi} \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$ \ldots \leq \int_{\mathbb{R}^d} |f(x)||e^{-2\pi i x \xi}| \hspace{0.1cm}dx = \int_{\mathbb{R}^d} |f(x)|\hspace{0.1cm}dx = ||f||_{L^1(\mathbb{R}^d)}$$ Thus, $\hat{f}(\xi)$ is bounded.
Now, let's see if $\hat{f}(\xi)$ is continuous. We begin by observing: $$|\hat{f}(\xi) - \hat{f}(\mu)| = \Bigg| \int_{\mathbb{R}^d} f(x) \big(e^{-2\pi i x \cdot \xi} - e^{-2\pi i x \cdot \mu}\big) \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$\ldots \leq \int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx$$ Note that since $f$ is $L^1(\mathbb{R}^d$, for any $\epsilon > 0$ we have that there exists an $R > 0$ such that: $$ \int_{B_R^c} |f(x)| \hspace{0.1cm} dx \leq \frac{\epsilon}{4}$$ (Where $B_R$ is a ball of radius $R$ centered the origin.)
Now, since $\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \leq 2$, we see: $$\int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx$$ From here, require: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}}$$ Now, it should be clear from the Cauchy Schwartz inequality that on $B_R$: $$ |x \cdot (\xi - \mu)| \leq R \delta = \frac{\epsilon}{8 \pi ||f||_{L^1(\mathbb{R}^d)}}$$ Therefore, plugging it all in, we finally see: $$\int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos(2\pi x \cdot (\xi - \mu)) - 1 \big| + \big|\sin(2\pi x \cdot (\xi - \mu))\big|\Big] \hspace{0.1cm}dx$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) - 1 \big| + \big|\sin\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) \big| \Big]$$ $$\leq \int_{B_R}|f(x)| \Big[\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} + \frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} \Big] \hspace{0.1cm}dx \hspace{0.25cm} \leq \ldots$$ $$\ldots \leq \frac{\epsilon ||f||_{L^1(\mathbb{R}^d)}}{2 ||f||_{L^1(\mathbb{R}^d)}} = \frac{\epsilon}{2}$$ Thus, we've just shown, for a sufficiently large $R > 0$: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |\hat{f}(\xi) - \hat{f}(\mu)| \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx \hspace{0.25cm} \leq$$ $$\ldots \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$ ...as desired.
Finally we want to show: $$\widehat{(f*g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$$ Proceed by directly applying Fubini's Theorem: $$\widehat{(f*g)}(\xi) = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm}dy \Bigg] e^{-2\pi i \xi x} \hspace{0.1cm} dx = \ldots$$ $$\ldots = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm} e^{-2\pi i \xi (x - y + y)} dy \Bigg] \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \Big(g(y) e^{-2\pi i \xi y}\Big) \hspace{0.1cm}dy \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \Big(g(y) e^{-2\pi i \xi y}\Big) \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \hspace{0.1cm}dx \hspace{0.1cm} dy$$ $$\ldots = \hat{f}(\xi)\int_{\mathbb{R}^d} g(y) e^{-2\pi i \xi y} \hspace{0.1cm} dy = \hat{f}(\xi)\hat{g}(\xi)$$ ...as desired.
Tuesday, June 18, 2013
2.18
Let $Q = [0,1]$. Since $|f(x) - f(y)| \in L^1(Q \times Q)$, and $|f(x)| < \infty \hspace{0.25cm} \forall x \in Q$, it follows directly from Fubini's Theorem that for almost every $y \in Q$:
$$\int_Q |f(x)-f(y)| \hspace{0.1cm}dx = \int_Q |f(x)- C| \hspace{0.1cm}dx < \infty$$
Where $C$ is a fixed real number in the range of $f$. Thus, it's easy to see:
$$\int_Q |f(x)| \hspace{0.1cm} dx \leq \int_Q |f(x) - C| + |C| \hspace{0.1cm} dx = \ldots$$
$$\ldots = |C| + \int_Q |f(x) - C| \hspace{0.1cm} dx < \infty$$
Thus, $f \in L^1(Q)$, as desired.
Monday, June 17, 2013
2.17
Part a.) By construction, it's straight-forward to see that since for any $x \geq 0 \hspace{0.25cm} \exists n \in \mathbb{N}$ such that $x \in [n,n+1)$, that $f_x(y) = a_n - a_n = 0$ for all $x \geq 0$. Thus, certainly:
$$\forall x, \int_{\mathbb{R}} f_x(y) dy = 0$$
...and therefore:
$$\int_\mathbb{R} \int_\mathbb{R} f_x(y) dy \hspace{0.1cm} dx = 0$$
Part b.) By construction again, you'll observe that since every $y \geq 0$ is between an $n \in \mathbb{Z}$ and $n+1$, that:
$$\int_{\mathbb{R}} f^y(x) \chi_{[n,n+1)}(y) dx = a_n - a_{n-1}$$
(Aside from the $n=0$ case, where the integral simply evaluates to $a_0$.) Thus, since:
$$a_n = \sum_{k \leq n} b_k$$
We can see:
$$a_n - a_{n-1} = b_n$$
...and finally, since these were constructed to be piecewise-constant functions:
$$\int_{\mathbb{R}} \int_{\mathbb{R}} f^y(x)dx \hspace{0.1cm} dy = \sum_{n=0}^\infty \int_{[n,n+1)} \Big(\int_{\mathbb{R}} f^y(x)dx\Big) dy \hspace{0.1cm} = \ldots$$
$$\ldots = a_0 + \sum_{n=1}^\infty (a_n - a_{n-1}) \hspace{0.25cm} = \hspace{0.25cm} \sum_{n=0}^\infty b_n = s < \infty$$
Part c.) Lastly, since $b_n > 0 \hspace{0.25cm} \forall n$, observe that $a_n > a_0 = b_0 > 0 \hspace{0.25cm} \forall n$. Thus, $$ \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x,y)| dx \hspace{0.1cm} dy \hspace{0.25cm} > \hspace{0.25cm} a_0 + 2\sum_{n=1}^\infty a_0 \hspace{0.25cm} = \hspace{0.25cm} \infty$$
Part c.) Lastly, since $b_n > 0 \hspace{0.25cm} \forall n$, observe that $a_n > a_0 = b_0 > 0 \hspace{0.25cm} \forall n$. Thus, $$ \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x,y)| dx \hspace{0.1cm} dy \hspace{0.25cm} > \hspace{0.25cm} a_0 + 2\sum_{n=1}^\infty a_0 \hspace{0.25cm} = \hspace{0.25cm} \infty$$
2.16
First, recall from the invariance properties of $L^1(\mathbb{R})$ functions that for any $f$ that's non-negative and $L^1(\mathbb{R})$:
$$ \int_\mathbb{R} f(-x)dx = \int_\mathbb{R} f(x)dx$$
In addition, for any $\delta > 0$,
$$ \int_\mathbb{R} f(\delta x)dx = \frac{1}{\delta} \int_\mathbb{R} f(x)dx$$
Now, let's combine these conditions. Assume $f$ is still non-negative and $L^1(\mathbb{R})$, and $\delta > 0$, then observe:
$$ \int_\mathbb{R} f(-\delta x)dx = \int_\mathbb{R} f(\delta x)dx = \frac{1}{\delta} \int_\mathbb{R} f(x)dx $$
Thus, it should be clear that for any non-negative $f \in L^1(\mathbb{R})$, and $\delta \neq 0$:
$$\int_\mathbb{R} f(\delta x) dx = \frac{1}{|\delta|} \int_\mathbb{R} f(x) dx$$
...which can clearly be extended to any $f \in L^1(\mathbb{R})$ by linearity. ($\dagger$)
Now, suppose $f$ is integrable on $\mathbb{R}^d$, and $\delta = (\delta_1, \ldots, \delta_d)$ is a $d-$tuple of non-zero real numbers such that: $$f^\delta (x) = f(\delta x) = f(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_d x_d)$$ We need to show $f^\delta (x)$ is integrable such that: $$ \int_{\mathbb{R}^d} f^\delta (x) dx = |\delta_1|^{-1} \cdot \cdot \cdot |\delta_d|^{-1} \int_{\mathbb{R}^d} f(x) dx $$ Proceed by first noting that since $f \in L^1(\mathbb{R}^d)$, it follows directly from Fubini's Theorem and $\dagger$ that given $\delta = (\delta_1, 1, \ldots, 1)$ that: $$ |\delta_1|^{-1} \int_{\mathbb{R}^d} f(x) \hspace{0.1cm} dx \hspace{.25cm} =\hspace{.25cm} |\delta_1|^{-1} \int_\mathbb{{R}^{d-1}} \int_{\mathbb{R}} f(x_1,y) \hspace{0.1cm} dx \hspace{0.1cm} dy = \ldots$$ $$ \ldots = \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} f(\delta_1 x_1, y) \hspace{0.1cm} dx \hspace{0.1cm} dy \hspace{.25cm}=\hspace{.25cm} \int_{\mathbb{R}^d} f(\delta x) dx$$ ...and since we can simply continue in this fashion for any $n \leq d$ (by a simple induction argument) we observe for $f \in L^1(\mathbb{R}^d)$, and any fixed, nowhere-zero, $d$-tuple $\delta$: $$\int_{\mathbb{R}^d} |f^\delta (x)|dx = \int_{\mathbb{R}^d} |f(\delta_1 x_1, \ldots, \delta_d x_d)| dx = \ldots $$ $$\ldots = |\delta_1|^{-1} \cdot \cdot \cdot |\delta_d|^{-1} \int_{\mathbb{R}^d} |f(x)| dx < \infty$$ We see that $f^\delta$ must be $L^1(\mathbb{R}^d)$.
Now, suppose $f$ is integrable on $\mathbb{R}^d$, and $\delta = (\delta_1, \ldots, \delta_d)$ is a $d-$tuple of non-zero real numbers such that: $$f^\delta (x) = f(\delta x) = f(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_d x_d)$$ We need to show $f^\delta (x)$ is integrable such that: $$ \int_{\mathbb{R}^d} f^\delta (x) dx = |\delta_1|^{-1} \cdot \cdot \cdot |\delta_d|^{-1} \int_{\mathbb{R}^d} f(x) dx $$ Proceed by first noting that since $f \in L^1(\mathbb{R}^d)$, it follows directly from Fubini's Theorem and $\dagger$ that given $\delta = (\delta_1, 1, \ldots, 1)$ that: $$ |\delta_1|^{-1} \int_{\mathbb{R}^d} f(x) \hspace{0.1cm} dx \hspace{.25cm} =\hspace{.25cm} |\delta_1|^{-1} \int_\mathbb{{R}^{d-1}} \int_{\mathbb{R}} f(x_1,y) \hspace{0.1cm} dx \hspace{0.1cm} dy = \ldots$$ $$ \ldots = \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} f(\delta_1 x_1, y) \hspace{0.1cm} dx \hspace{0.1cm} dy \hspace{.25cm}=\hspace{.25cm} \int_{\mathbb{R}^d} f(\delta x) dx$$ ...and since we can simply continue in this fashion for any $n \leq d$ (by a simple induction argument) we observe for $f \in L^1(\mathbb{R}^d)$, and any fixed, nowhere-zero, $d$-tuple $\delta$: $$\int_{\mathbb{R}^d} |f^\delta (x)|dx = \int_{\mathbb{R}^d} |f(\delta_1 x_1, \ldots, \delta_d x_d)| dx = \ldots $$ $$\ldots = |\delta_1|^{-1} \cdot \cdot \cdot |\delta_d|^{-1} \int_{\mathbb{R}^d} |f(x)| dx < \infty$$ We see that $f^\delta$ must be $L^1(\mathbb{R}^d)$.
Saturday, June 15, 2013
2.10
Given $f$ measurable on $\mathbb{R}^d$, and the sets:
$$E_{2^k} = \lbrace x \hspace{0.25cm} | \hspace{0.25cm} f(x) > 2^k \rbrace $$
$$F_k = \lbrace x \hspace{0.25cm} | \hspace{0.25cm} 2^k < f(x) \leq 2^{k+1} \rbrace $$
The exercise is asking us to prove:
$$f \in L^1 \iff \sum_{k=-\infty}^\infty 2^k m(F_k) < \infty \iff \sum_{k=-\infty}^\infty 2^k m(E_{2^k}) < \infty$$ Denote these conditions as $a, b,$ and $c$ respectively. Proof of this statement needs to be broken up into four parts:
Part 1: $a \Rightarrow b$. Simply observe that: $$\sum_{k=-\infty}^\infty 2^k m(F_k) \hspace{0.25cm} =\hspace{0.25cm} \sum_{k=-\infty}^\infty \int_{F_k} 2^k dx \hspace{0.25cm} \leq \ldots$$ $$\ldots \leq \hspace{0.25cm} \sum_{k=-\infty}^\infty \int_{F_k} f(x) dx \hspace{0.25cm} = \hspace{0.25cm} \int_{\mathbb{R}^d} f(x)dx < \infty$$ Part 2: $b \Rightarrow a$. Similarly: $$\frac{1}{2} \int_{\mathbb{R}^d} f(x)dx \hspace{0.25cm} \leq \hspace{0.25cm} \frac{1}{2} \sum_{k=-\infty}^\infty \int_{F_k} f(x) dx \leq \ldots $$ $$ \ldots \leq \hspace{0.25cm} \frac{1}{2} \sum_{k=-\infty}^\infty \int_{F_k} 2^{k+1} dx = \sum_{k=-\infty}^\infty 2^{k} m(F_k) < \infty$$ Part 3: $c \Rightarrow b$. Certainly, $F_k \subset E_{2^k}$. Thus: $$\sum_{k=-\infty}^\infty 2^{k} m(F_k) \leq \sum_{k=-\infty}^\infty 2^{k} m(E_{2^k}) < \infty$$ Part 4: $b \Rightarrow c$. First observe that $E_{2^k} = \bigcup_{n=k}^\infty F_k$. Indeed, $$\sum_{k=-\infty}^\infty 2^{k} m(E_{2^k}) \leq \sum_{k=-\infty}^\infty \sum_{n=k}^\infty 2^{k} m(F_{n}) = \ldots $$ ...(by Fubini's Theorem) $$\ldots = \sum_{n=-\infty}^\infty \sum_{k=-\infty}^n 2^{k} m(F_{n}) = \sum_{n=-\infty}^\infty \Bigg(2^n m(F_n) \sum_{k=-\infty}^n 2^{k-n} \Bigg) = \ldots$$ $$\ldots = \sum_{n=-\infty}^\infty 2^{n+1} m(F_n) < \infty$$ Thus, $a \iff b \iff c$, as desired.
The second half of the exercise wants us to investigate the following functions:
Where $B$ is the closed unit ball centered at the origin.
For the first function, notice that after solving for $|x|$, the sets $E_{2^k}$, where $k \geq 0$ are: $$E_{2^k} = \lbrace x \hspace{0.25cm} | \hspace{0.25cm} |x| < 2^{-\frac{k}{a}} \rbrace$$ I.e. for positive $k$, $m(E_{2^k}) = v_d (2^{-\frac{k}{a}})^d$. Notice also that for $k < 0$, $m(E_{2^k}) = v_d$. Thus, $$ \sum_{k=-\infty}^\infty 2^k m(E_{2^k}) = \sum_{k=-\infty}^0 v_d 2^k + \sum_{k=1}^\infty 2^k v_d (2^{-\frac{k}{a}})^d = \ldots$$ $$ \ldots = 2v_d + \sum_{k=1}^\infty v_d 2^{k(1-\frac{d}{a})}$$ ...which will only converge if $d > a$. Thus, if $d > a$, $f(x)$ is $L^1$.
For the second function, for $-\infty < k < 0$: $$E_{2^k} = \lbrace x \hspace{0.25cm} | \hspace{0.25cm} |x| < 2^{-\frac{k}{b}} \rbrace$$ Similar to before, notice that for $k \geq 0, m(E_{2^k}) = 0.$ Thus,: $$ \sum_{k=-\infty}^\infty 2^k m(E_{2^k}) = \sum_{k=-\infty}^{-1} 2^k v_d (2^{-\frac{k}{b}})^d = \sum_{k=-\infty}^{-1} v_d 2^{k(1 -\frac{d}{b})}$$ ...which will clearly only converge if $d < b$. Thus, $g(x)$ is $L^1$ if $d < b$.
$$f \in L^1 \iff \sum_{k=-\infty}^\infty 2^k m(F_k) < \infty \iff \sum_{k=-\infty}^\infty 2^k m(E_{2^k}) < \infty$$ Denote these conditions as $a, b,$ and $c$ respectively. Proof of this statement needs to be broken up into four parts:
Part 1: $a \Rightarrow b$. Simply observe that: $$\sum_{k=-\infty}^\infty 2^k m(F_k) \hspace{0.25cm} =\hspace{0.25cm} \sum_{k=-\infty}^\infty \int_{F_k} 2^k dx \hspace{0.25cm} \leq \ldots$$ $$\ldots \leq \hspace{0.25cm} \sum_{k=-\infty}^\infty \int_{F_k} f(x) dx \hspace{0.25cm} = \hspace{0.25cm} \int_{\mathbb{R}^d} f(x)dx < \infty$$ Part 2: $b \Rightarrow a$. Similarly: $$\frac{1}{2} \int_{\mathbb{R}^d} f(x)dx \hspace{0.25cm} \leq \hspace{0.25cm} \frac{1}{2} \sum_{k=-\infty}^\infty \int_{F_k} f(x) dx \leq \ldots $$ $$ \ldots \leq \hspace{0.25cm} \frac{1}{2} \sum_{k=-\infty}^\infty \int_{F_k} 2^{k+1} dx = \sum_{k=-\infty}^\infty 2^{k} m(F_k) < \infty$$ Part 3: $c \Rightarrow b$. Certainly, $F_k \subset E_{2^k}$. Thus: $$\sum_{k=-\infty}^\infty 2^{k} m(F_k) \leq \sum_{k=-\infty}^\infty 2^{k} m(E_{2^k}) < \infty$$ Part 4: $b \Rightarrow c$. First observe that $E_{2^k} = \bigcup_{n=k}^\infty F_k$. Indeed, $$\sum_{k=-\infty}^\infty 2^{k} m(E_{2^k}) \leq \sum_{k=-\infty}^\infty \sum_{n=k}^\infty 2^{k} m(F_{n}) = \ldots $$ ...(by Fubini's Theorem) $$\ldots = \sum_{n=-\infty}^\infty \sum_{k=-\infty}^n 2^{k} m(F_{n}) = \sum_{n=-\infty}^\infty \Bigg(2^n m(F_n) \sum_{k=-\infty}^n 2^{k-n} \Bigg) = \ldots$$ $$\ldots = \sum_{n=-\infty}^\infty 2^{n+1} m(F_n) < \infty$$ Thus, $a \iff b \iff c$, as desired.
The second half of the exercise wants us to investigate the following functions:
$f(x) = \Bigg\lbrace \begin{array}{cc} |x|^{-a} & |x| \leq 1 & \\ 0 & \text{otherwise} \\ \end{array}$ | and | $g(x) = \Bigg\lbrace \begin{array}{cc} |x|^{-b} & |x| > 1 & \\ 0 & \text{otherwise} \\ \end{array}$ |
Where $B$ is the closed unit ball centered at the origin.
For the first function, notice that after solving for $|x|$, the sets $E_{2^k}$, where $k \geq 0$ are: $$E_{2^k} = \lbrace x \hspace{0.25cm} | \hspace{0.25cm} |x| < 2^{-\frac{k}{a}} \rbrace$$ I.e. for positive $k$, $m(E_{2^k}) = v_d (2^{-\frac{k}{a}})^d$. Notice also that for $k < 0$, $m(E_{2^k}) = v_d$. Thus, $$ \sum_{k=-\infty}^\infty 2^k m(E_{2^k}) = \sum_{k=-\infty}^0 v_d 2^k + \sum_{k=1}^\infty 2^k v_d (2^{-\frac{k}{a}})^d = \ldots$$ $$ \ldots = 2v_d + \sum_{k=1}^\infty v_d 2^{k(1-\frac{d}{a})}$$ ...which will only converge if $d > a$. Thus, if $d > a$, $f(x)$ is $L^1$.
For the second function, for $-\infty < k < 0$: $$E_{2^k} = \lbrace x \hspace{0.25cm} | \hspace{0.25cm} |x| < 2^{-\frac{k}{b}} \rbrace$$ Similar to before, notice that for $k \geq 0, m(E_{2^k}) = 0.$ Thus,: $$ \sum_{k=-\infty}^\infty 2^k m(E_{2^k}) = \sum_{k=-\infty}^{-1} 2^k v_d (2^{-\frac{k}{b}})^d = \sum_{k=-\infty}^{-1} v_d 2^{k(1 -\frac{d}{b})}$$ ...which will clearly only converge if $d < b$. Thus, $g(x)$ is $L^1$ if $d < b$.
Monday, June 10, 2013
2.4
It suffices to consider $f$ to be a non-negative $L^1$ function. It's not at first apparent that $g(x)$ is an $L^1$ function. First, define the set:
$$T(b) = \lbrace (x,t) \in \mathbb{R} \times \mathbb{R} \hspace{0.25cm} \big|\hspace{0.25cm} 0 < x \leq t, \hspace{0.25cm} x \leq t \leq b \rbrace$$
(It's just the triangle formed by taking the square $[0,b] \times [0,b]$, bisecting it with the line $x = t$, and taking the top half.) Next, define the function:
$$F(x,t) = \frac{f(t)}{t} \chi_{T(b)}$$
Certainly, $F$ is measurable, since $\chi_{T(b)}$, $f$, and $\frac{1}{t}$ are measurable functions. Next, observe that:
$$\int_{[0,b]} g(x) dx = \int_{[0,b]} \int_{[x,b]} \frac{f(t)}{t}dtdx = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{f(t)}{t} \chi_{T(b)} dt dx $$ From here, Tonelli's Theorem gives, that since $F$ is measurable: $$ \int_{[0,b]} \int_{[x,b]} \frac{f(t)}{t}dtdx = \int_{[0,b]} \int_{[0,t]} \frac{f(t)}{t} dx dt = \int_{[0,b]} f(t) dt$$ Thus, since $f \in L^1$, we have: $$\int_{[0,b]} g(x) dx = \int_{[0,b]} f(t) dt < \infty \hspace{0.25cm} \Rightarrow g \in L^1$$ ...as desired.
$$\int_{[0,b]} g(x) dx = \int_{[0,b]} \int_{[x,b]} \frac{f(t)}{t}dtdx = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{f(t)}{t} \chi_{T(b)} dt dx $$ From here, Tonelli's Theorem gives, that since $F$ is measurable: $$ \int_{[0,b]} \int_{[x,b]} \frac{f(t)}{t}dtdx = \int_{[0,b]} \int_{[0,t]} \frac{f(t)}{t} dx dt = \int_{[0,b]} f(t) dt$$ Thus, since $f \in L^1$, we have: $$\int_{[0,b]} g(x) dx = \int_{[0,b]} f(t) dt < \infty \hspace{0.25cm} \Rightarrow g \in L^1$$ ...as desired.
Subscribe to:
Posts (Atom)