In preparation for a qualifying exam in Real Analysis, during the summer of 2013, I plan to solve as many problems from Stein & Shakarchi's Real Analysis text as I can. Please feel free to comment or correct me as I make my way through this.
Showing posts with label Fourier. Show all posts
Showing posts with label Fourier. Show all posts
Thursday, June 20, 2013
2.23
Assume to the contrary that there does exist an $I \in L^1(\mathbb{R}^d)$ such that:
$$(f*I) = f \hspace{0.25cm} \forall f \in L^1(\mathbb{R}^d)$$
It follows from the latter parts of exercise 21 that:
$$\hat{f}(\xi) = \widehat{(f*I)}(\xi) = \hat{f}(\xi)\hat{I}(\xi)$$
Thus, since $\hat{f}(\xi)$ need not be zero, we have that $\hat{I}(\xi) = 1 \hspace{0.25cm} \forall \xi$. I.e. $\lim_{\xi \to \infty} \hat{I}(\xi) = 1$. This contradicts the Riemann-Lebesgue Lemma. Therefore, $I \notin L^1(\mathbb{R}^d)$.
2.22
This exercise is asking us to prove the Riemann-Lebesgue Lemma. Exactly as the hint prescribes, first observe that $\xi \cdot \xi' = \frac{1}{2}$, and then by the translation invariance of the Lebesgue integral:
$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x - \xi')e^{-2\pi i (x - \xi') \cdot \xi} \hspace{0.1cm}dx = \ldots$$
$$= \int_{\mathbb{R}^d} f(x - \xi')e^{-2\pi i x \cdot \xi} e^{-2\pi i \xi \cdot \xi'} \hspace{0.1cm}dx = -\int_{\mathbb{R}^d} f(x - \xi')e^{-2\pi i x \cdot \xi}\hspace{0.1cm}dx$$
So we can certainly rewrite $\hat{f}(\xi)$ as:
$$\hat{f}(\xi) = \frac{1}{2} \int_{\mathbb{R}^d}\big(f(x)- f(x - \xi')\big)e^{-2\pi i x \cdot \xi}\hspace{0.1cm}dx$$
Now, observe that:
$$\lim_{|\xi| \to \infty} |\hat{f}(\xi)| = \lim_{|\xi| \to \infty} \Bigg|\frac{1}{2} \int_{\mathbb{R}^d}\big(f(x)- f(x - \xi')\big)e^{-2\pi i x \cdot \xi}\hspace{0.1cm}dx\Bigg| = \dagger$$
...and thus, by the triangle inequality, and since $\xi' \to 0$ if $|\xi| \to \infty$, it's clear that:
$$\dagger \leq \lim_{\xi' \to 0} \frac{1}{2} \int_{\mathbb{R}^d}\big|f(x)- f(x - \xi')\big| \hspace{0.1cm}dx = 0$$
...from Proposition 2.5 (p. 74).
2.21
Part a.) Since the product of two measurable functions is measurable, it suffices to show that $f(x-y)$ and $g(y)\chi_{\mathbb{R}^d(x)}$ are each measurable in $\mathbb{R}^{2d}$.
Conveniently, since $f$ is measurable on $\mathbb{R}^d$, it follows directly from Proposition 3.9 (p. 86) that $f(x-y)$ is measurable on $\mathbb{R}^{2d}$. Also, since $g$ is measurable on $\mathbb{R}^d$, it follows directly from Corollary 3.7 (P. 85) that $g(y)\chi_{\mathbb{R}^d(x)}$ is measurable on $\mathbb{R}^{2d}$.
Part b.) Since we know $f(x-y)g(y)$ is measurable, by Tonelli's Theorem we have: $$\int_{\mathbb{R}^{2d}} |f(x-y)g(y)| \hspace{0.1cm}d(x,y) \hspace{0.25cm}=\hspace{0.25cm} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy$$ ...and from the translation invariance of integration we get: $$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \int_{\mathbb{R}^d} |g(y)| \int_{\mathbb{R}^d} |f(x-y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)} \int_{\mathbb{R}^d} |g(y)| dy = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)} < \infty$$ ...since both $f$ and $g$ are $L^1$.
Part c.) Since $f(x-y)g(y)$ was just shown to be integrable, it follows directly from Fubini's Theorem that for almost every $x \in \mathbb{R}^d$, : $$\int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy < \infty$$ I.e., the convolution: $$(f*g)(x) = \int_{\mathbb{R}^d} f(x-y)g(y)\hspace{0.1cm}dy$$ ...is well-defined for a.e. $x \in \mathbb{R}^d$.
Part d.) Observe that: $$\int_{\mathbb{R}^d} |(f*g)(x)\hspace{0.1cm}| dx = \int_{\mathbb{R}^d} \Bigg| \int_{\mathbb{R}^d}f(x-y)g(y)\hspace{0.1cm}dy \hspace{0.1cm}\Bigg| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx$$ ...which, by part b, we see: $$||(f*g)||_{L^1(\mathbb{R}^d)} = \int_{\mathbb{R}^d} |(f*g)(x)|\hspace{0.1cm} dx \leq \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$$ Now, if $f$ and $g$ are positive functions, $|f(x-y)g(y)|=f(x-y)g(y)$, so equality of $||(f*g)||_{L^1(\mathbb{R}^d)}$ and $||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$ follows (again) directly from part b.
Part e.) Let's first check that $\hat{f}(\xi)$ is bounded. Recall that $|e^{i \theta}| = 1 \hspace{0.25cm} \forall \theta \in \mathbb{R}$. Then, observe: $$|\hat{f}(\xi)| = \Bigg| \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \xi} \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$ \ldots \leq \int_{\mathbb{R}^d} |f(x)||e^{-2\pi i x \xi}| \hspace{0.1cm}dx = \int_{\mathbb{R}^d} |f(x)|\hspace{0.1cm}dx = ||f||_{L^1(\mathbb{R}^d)}$$ Thus, $\hat{f}(\xi)$ is bounded.
Now, let's see if $\hat{f}(\xi)$ is continuous. We begin by observing: $$|\hat{f}(\xi) - \hat{f}(\mu)| = \Bigg| \int_{\mathbb{R}^d} f(x) \big(e^{-2\pi i x \cdot \xi} - e^{-2\pi i x \cdot \mu}\big) \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$\ldots \leq \int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx$$ Note that since $f$ is $L^1(\mathbb{R}^d$, for any $\epsilon > 0$ we have that there exists an $R > 0$ such that: $$ \int_{B_R^c} |f(x)| \hspace{0.1cm} dx \leq \frac{\epsilon}{4}$$ (Where $B_R$ is a ball of radius $R$ centered the origin.)
Now, since $\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \leq 2$, we see: $$\int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx$$ From here, require: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}}$$ Now, it should be clear from the Cauchy Schwartz inequality that on $B_R$: $$ |x \cdot (\xi - \mu)| \leq R \delta = \frac{\epsilon}{8 \pi ||f||_{L^1(\mathbb{R}^d)}}$$ Therefore, plugging it all in, we finally see: $$\int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos(2\pi x \cdot (\xi - \mu)) - 1 \big| + \big|\sin(2\pi x \cdot (\xi - \mu))\big|\Big] \hspace{0.1cm}dx$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) - 1 \big| + \big|\sin\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) \big| \Big]$$ $$\leq \int_{B_R}|f(x)| \Big[\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} + \frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} \Big] \hspace{0.1cm}dx \hspace{0.25cm} \leq \ldots$$ $$\ldots \leq \frac{\epsilon ||f||_{L^1(\mathbb{R}^d)}}{2 ||f||_{L^1(\mathbb{R}^d)}} = \frac{\epsilon}{2}$$ Thus, we've just shown, for a sufficiently large $R > 0$: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |\hat{f}(\xi) - \hat{f}(\mu)| \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx \hspace{0.25cm} \leq$$ $$\ldots \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$ ...as desired.
Finally we want to show: $$\widehat{(f*g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$$ Proceed by directly applying Fubini's Theorem: $$\widehat{(f*g)}(\xi) = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm}dy \Bigg] e^{-2\pi i \xi x} \hspace{0.1cm} dx = \ldots$$ $$\ldots = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm} e^{-2\pi i \xi (x - y + y)} dy \Bigg] \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \Big(g(y) e^{-2\pi i \xi y}\Big) \hspace{0.1cm}dy \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \Big(g(y) e^{-2\pi i \xi y}\Big) \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \hspace{0.1cm}dx \hspace{0.1cm} dy$$ $$\ldots = \hat{f}(\xi)\int_{\mathbb{R}^d} g(y) e^{-2\pi i \xi y} \hspace{0.1cm} dy = \hat{f}(\xi)\hat{g}(\xi)$$ ...as desired.
Conveniently, since $f$ is measurable on $\mathbb{R}^d$, it follows directly from Proposition 3.9 (p. 86) that $f(x-y)$ is measurable on $\mathbb{R}^{2d}$. Also, since $g$ is measurable on $\mathbb{R}^d$, it follows directly from Corollary 3.7 (P. 85) that $g(y)\chi_{\mathbb{R}^d(x)}$ is measurable on $\mathbb{R}^{2d}$.
Part b.) Since we know $f(x-y)g(y)$ is measurable, by Tonelli's Theorem we have: $$\int_{\mathbb{R}^{2d}} |f(x-y)g(y)| \hspace{0.1cm}d(x,y) \hspace{0.25cm}=\hspace{0.25cm} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy$$ ...and from the translation invariance of integration we get: $$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \int_{\mathbb{R}^d} |g(y)| \int_{\mathbb{R}^d} |f(x-y)| \hspace{0.1cm}dx\hspace{0.1cm}dy = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)} \int_{\mathbb{R}^d} |g(y)| dy = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)} < \infty$$ ...since both $f$ and $g$ are $L^1$.
Part c.) Since $f(x-y)g(y)$ was just shown to be integrable, it follows directly from Fubini's Theorem that for almost every $x \in \mathbb{R}^d$, : $$\int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy < \infty$$ I.e., the convolution: $$(f*g)(x) = \int_{\mathbb{R}^d} f(x-y)g(y)\hspace{0.1cm}dy$$ ...is well-defined for a.e. $x \in \mathbb{R}^d$.
Part d.) Observe that: $$\int_{\mathbb{R}^d} |(f*g)(x)\hspace{0.1cm}| dx = \int_{\mathbb{R}^d} \Bigg| \int_{\mathbb{R}^d}f(x-y)g(y)\hspace{0.1cm}dy \hspace{0.1cm}\Bigg| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx$$ ...which, by part b, we see: $$||(f*g)||_{L^1(\mathbb{R}^d)} = \int_{\mathbb{R}^d} |(f*g)(x)|\hspace{0.1cm} dx \leq \int_{\mathbb{R}^d}|f(x-y)g(y)|\hspace{0.1cm}dy \hspace{0.1cm}dx = \ldots$$ $$\ldots = ||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$$ Now, if $f$ and $g$ are positive functions, $|f(x-y)g(y)|=f(x-y)g(y)$, so equality of $||(f*g)||_{L^1(\mathbb{R}^d)}$ and $||f||_{L^1(\mathbb{R}^d)}||g||_{L^1(\mathbb{R}^d)}$ follows (again) directly from part b.
Part e.) Let's first check that $\hat{f}(\xi)$ is bounded. Recall that $|e^{i \theta}| = 1 \hspace{0.25cm} \forall \theta \in \mathbb{R}$. Then, observe: $$|\hat{f}(\xi)| = \Bigg| \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \xi} \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$ \ldots \leq \int_{\mathbb{R}^d} |f(x)||e^{-2\pi i x \xi}| \hspace{0.1cm}dx = \int_{\mathbb{R}^d} |f(x)|\hspace{0.1cm}dx = ||f||_{L^1(\mathbb{R}^d)}$$ Thus, $\hat{f}(\xi)$ is bounded.
Now, let's see if $\hat{f}(\xi)$ is continuous. We begin by observing: $$|\hat{f}(\xi) - \hat{f}(\mu)| = \Bigg| \int_{\mathbb{R}^d} f(x) \big(e^{-2\pi i x \cdot \xi} - e^{-2\pi i x \cdot \mu}\big) \hspace{0.1cm} dx \Bigg| \leq \ldots $$ $$\ldots \leq \int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx$$ Note that since $f$ is $L^1(\mathbb{R}^d$, for any $\epsilon > 0$ we have that there exists an $R > 0$ such that: $$ \int_{B_R^c} |f(x)| \hspace{0.1cm} dx \leq \frac{\epsilon}{4}$$ (Where $B_R$ is a ball of radius $R$ centered the origin.)
Now, since $\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \leq 2$, we see: $$\int_{\mathbb{R}^d}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx$$ From here, require: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}}$$ Now, it should be clear from the Cauchy Schwartz inequality that on $B_R$: $$ |x \cdot (\xi - \mu)| \leq R \delta = \frac{\epsilon}{8 \pi ||f||_{L^1(\mathbb{R}^d)}}$$ Therefore, plugging it all in, we finally see: $$\int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx \leq \ldots$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos(2\pi x \cdot (\xi - \mu)) - 1 \big| + \big|\sin(2\pi x \cdot (\xi - \mu))\big|\Big] \hspace{0.1cm}dx$$ $$\leq \int_{B_R}|f(x)| \Big[\big| \cos\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) - 1 \big| + \big|\sin\big(\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}}\big) \big| \Big]$$ $$\leq \int_{B_R}|f(x)| \Big[\frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} + \frac{\epsilon}{4 ||f||_{L^1(\mathbb{R}^d)}} \Big] \hspace{0.1cm}dx \hspace{0.25cm} \leq \ldots$$ $$\ldots \leq \frac{\epsilon ||f||_{L^1(\mathbb{R}^d)}}{2 ||f||_{L^1(\mathbb{R}^d)}} = \frac{\epsilon}{2}$$ Thus, we've just shown, for a sufficiently large $R > 0$: $$||\xi - \mu|| < \delta = \frac{\epsilon}{8 \pi R ||f||_{L^1(\mathbb{R}^d)}} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |\hat{f}(\xi) - \hat{f}(\mu)| \leq \ldots$$ $$\ldots \leq \int_{B_R}|f(x)|\big|e^{-2\pi i x \cdot (\xi - \mu)} - 1 \big| \hspace{0.1cm}dx + 2\int_{B_R^c}|f(x)| \hspace{0.1cm}dx \hspace{0.25cm} \leq$$ $$\ldots \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$ ...as desired.
Finally we want to show: $$\widehat{(f*g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$$ Proceed by directly applying Fubini's Theorem: $$\widehat{(f*g)}(\xi) = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm}dy \Bigg] e^{-2\pi i \xi x} \hspace{0.1cm} dx = \ldots$$ $$\ldots = \int_{\mathbb{R}^d} \Bigg[\int_{\mathbb{R}^d} f(x-y)g(y) \hspace{0.1cm} e^{-2\pi i \xi (x - y + y)} dy \Bigg] \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \Big(g(y) e^{-2\pi i \xi y}\Big) \hspace{0.1cm}dy \hspace{0.1cm} dx$$ $$\ldots = \int_{\mathbb{R}^d} \Big(g(y) e^{-2\pi i \xi y}\Big) \int_{\mathbb{R}^d} \Big(f(x-y) e^{-2\pi i \xi (x-y)} \Big) \hspace{0.1cm}dx \hspace{0.1cm} dy$$ $$\ldots = \hat{f}(\xi)\int_{\mathbb{R}^d} g(y) e^{-2\pi i \xi y} \hspace{0.1cm} dy = \hat{f}(\xi)\hat{g}(\xi)$$ ...as desired.
Subscribe to:
Posts (Atom)