Processing math: 100%

Tuesday, May 28, 2013

1.7

It suffices to show that \forall \epsilon > 0, \exists \mathcal{O}, open, such that m^*(\mathcal{O}-\delta E) < \epsilon. Before we move ahead, first define: \Delta = (\delta_1 \cdot \ldots \cdot \delta_d) Recall that if Q_k is a closed cube, Q_k = [a_1, b_1]\times[a_2,b_2]\times \ldots \times[a_d,b_d] ...where a_k < b_k \in \mathbb{R}, and: m(Q_k) = \prod_{k = 1}^{d}(b_k - a_k)
\dagger Observe that for any closed cube Q, \delta Q = [\delta_1 a_1, \delta_1 b_1]\times[\delta_2 a_2,\delta_2 b_2]\times \ldots \times[\delta_d a_d,\delta_d b_d] \Rightarrow m(\delta Q) = \prod_{k = 1}^{d}\delta_k(b_k - a_k) = \Delta m(Q)
Next, observe that if \mathcal{O} is open, \delta \mathcal{O} is open. (This is somewhat trivial... just notice that x \in \mathcal{O} \Rightarrow \exists r > 0 s.t. B_r{(x)} \subset \mathcal{O}.

Now, just let \tau = \min\left\lbrace \delta_1, \ldots, \delta_d \right\rbrace, and observe that x \in \mathcal{O} \Rightarrow \delta x \in \delta \mathcal{O} and B_{\tau r}{(\delta x)} \subset \delta \mathcal{O}.)

Next, since E is measurable, \forall \epsilon > 0, \exists \mathcal{O}, open, such that E \subset \mathcal{O}, and m^*(\mathcal{O}-E) < \frac{\epsilon}{\Delta}. Certainly, E \subset \mathcal{O} \Rightarrow \delta E \subset \delta \mathcal{O}.

Lastly, notice: m^*(\delta \mathcal{O} - \delta E) = \inf \Big\lbrace \sum_{k=1}^{\infty} m(\delta Q_k) \hspace{0.25cm} \Big| \hspace{0.25cm} (\mathcal{O} - E) \subset \bigcup_{k=1}^{\infty} Q_k \Big\rbrace ...which, by (\dagger): = \inf \Big\lbrace \Delta \sum_{k=1}^{\infty} m(Q_k) \hspace{0.25cm} \Big|\hspace{0.25cm} (\mathcal{O} - E) \subset \bigcup_{k=1}^{\infty} Q_k \Big\rbrace = \ldots
\ldots = \Delta m^*(\mathcal{O}-E) < \Delta \frac{\epsilon}{\Delta} = \epsilon ...as desired.

1 comment: