First, recall from the invariance properties of $L^1(\mathbb{R})$ functions that for any $f$ that's non-negative and $L^1(\mathbb{R})$:
$$ \int_\mathbb{R} f(-x)dx = \int_\mathbb{R} f(x)dx$$
In addition, for any $\delta > 0$,
$$ \int_\mathbb{R} f(\delta x)dx = \frac{1}{\delta} \int_\mathbb{R} f(x)dx$$
Now, let's combine these conditions. Assume $f$ is still non-negative and $L^1(\mathbb{R})$, and $\delta > 0$, then observe:
$$ \int_\mathbb{R} f(-\delta x)dx = \int_\mathbb{R} f(\delta x)dx = \frac{1}{\delta} \int_\mathbb{R} f(x)dx $$
Thus, it should be clear that for any non-negative $f \in L^1(\mathbb{R})$, and $\delta \neq 0$:
$$\int_\mathbb{R} f(\delta x) dx = \frac{1}{|\delta|} \int_\mathbb{R} f(x) dx$$
...which can clearly be extended to any $f \in L^1(\mathbb{R})$ by linearity. ($\dagger$)
Now, suppose $f$ is integrable on $\mathbb{R}^d$, and $\delta = (\delta_1, \ldots, \delta_d)$ is a $d-$tuple of non-zero real numbers such that:
$$f^\delta (x) = f(\delta x) = f(\delta_1 x_1, \delta_2 x_2, \ldots, \delta_d x_d)$$
We need to show $f^\delta (x)$ is integrable such that:
$$ \int_{\mathbb{R}^d} f^\delta (x) dx = |\delta_1|^{-1} \cdot \cdot \cdot |\delta_d|^{-1} \int_{\mathbb{R}^d} f(x) dx $$
Proceed by first noting that since $f \in L^1(\mathbb{R}^d)$, it follows directly from Fubini's Theorem and $\dagger$ that given $\delta = (\delta_1, 1, \ldots, 1)$ that:
$$ |\delta_1|^{-1} \int_{\mathbb{R}^d} f(x) \hspace{0.1cm} dx \hspace{.25cm} =\hspace{.25cm} |\delta_1|^{-1} \int_\mathbb{{R}^{d-1}} \int_{\mathbb{R}} f(x_1,y) \hspace{0.1cm} dx \hspace{0.1cm} dy = \ldots$$
$$ \ldots = \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} f(\delta_1 x_1, y) \hspace{0.1cm} dx \hspace{0.1cm} dy \hspace{.25cm}=\hspace{.25cm} \int_{\mathbb{R}^d} f(\delta x) dx$$
...and since we can simply continue in this fashion for any $n \leq d$ (by a simple induction argument) we observe for $f \in L^1(\mathbb{R}^d)$, and any fixed, nowhere-zero, $d$-tuple $\delta$:
$$\int_{\mathbb{R}^d} |f^\delta (x)|dx = \int_{\mathbb{R}^d} |f(\delta_1 x_1, \ldots, \delta_d x_d)| dx = \ldots $$
$$\ldots = |\delta_1|^{-1} \cdot \cdot \cdot |\delta_d|^{-1} \int_{\mathbb{R}^d} |f(x)| dx < \infty$$
We see that $f^\delta$ must be $L^1(\mathbb{R}^d)$.
No comments:
Post a Comment